QuakeML—An XML Representation of Seismological Data
Basic Event Description
Version 1.0.1

Proposed Recommendation
25 February 2008

This version:

Latest version:

Previous version(s):
1.0: http://quake.ethz.ch/quakeml/docs/PR?action=AttachFile&do=get&target=QuakeML-BED-20071213.pdf

Editors:
F. Euchner, D. Schorlemmer

Authors:
Danijel Schorlemmer1 (ds@usc.edu)
Joachim Saul3 (saul@gfz-potsdam.de)
Fabian Euchner2 (fabian.euchner@sed.ethz.ch)
Jan Becker1 (jan.becker@gfz-potsdam.de)
Ray Buland4 (buland@usgs.gov)
Andres Heinloo3 (andres@gfz-potsdam.de)
Linus Kamb5 (linus@iris.washington.edu)
Philipp Kästli2 (philipp.kaestli@sed.ethz.ch)
Alessandro Spinuso6 (spinuso@knmi.nl)
Bernd Weber1 (weber@gfz-potsdam.de)

1 Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA
2 Swiss Seismological Service, ETH Zurich, Schafmattstrasse 30, 8093 Zurich, Switzerland
3 GeoForschungsZentrum Potsdam, Telegrafenberg, 14437 Potsdam, Germany
4 National Earthquake Information Center, U.S. Geological Survey, Denver, CO 80225, USA
5 IRIS Data Management Center, Seattle, WA 98105, USA
6 Seismology Division, KNMI, ORFEUS, De Bilt, The Netherlands

http://www.quakeml.org
quakeml@sed.ethz.ch
Abstract

This document describes the standards for QuakeML, an XML-based data exchange format for seismology. It presents UML class diagrams for the two variants, QuakeML and QuakeML-RT, and explains the components used. XML Schema representations of the data models are given.

Acknowledgements

We thank Rémy Bossu, John Clinton, Torild van Eck, Göran Ekström, Paul Friberg, Stéphanie Godey, Winfried Hanka, Maria Liukis, Philip Maechling, Silvio Maraini, Stefan Wiemer, Jochen Wössner, and Adrian Wyss for their contributions to QuakeML. QuakeML development at ETH Zürich is funded as part of the NERIES project (EC contract no. 026130). GFZ Potsdam acknowledges funding by the Bundesministerium für Bildung und Forschung (GITEWS project).
1 Introduction

Seismological data cover a broad range of information and are stored in many different formats. In most cases, these format definitions are tailored to fit the specific requirements for a narrow field of applications. QuakeML, an XML representation of seismological data, is intended to standardize seismological data exchange, and to be applicable for a wide range of scientific and technical problems.

XML is a standardized general-purpose markup language that allows the formal definition of descriptive languages for a broad range of applications (Bray et al. 2000). One of its strengths is that it is plain-text based. Thus, it is platform-independent, readable by humans and machines, and probably reasonably future-proof regarding technological advancement.

A basic outline of the general concept of QuakeML can be found in Schorlemmer et al. (2004)\(^1\).

The first part of QuakeML, as described in this document, provides a basic description of seismic event data and introduces a new concept for unambiguous resource identification. It includes information on origin, origin uncertainties, picks, amplitudes, magnitudes and focal mechanisms. The following parts of QuakeML will deal with the description of inventory information, and resource metadata. Future QuakeML development will cover waveform data, macroseismic information, slip distributions, and ground motion information.

QuakeML describes properties of seismic events in a hierarchical manner, using \textit{a posteriori} knowledge of the relations between elements (e.g., association of origins to events). When dealing with real-time processing of seismic data, this information may not be present. Therefore, an alternative version using flatter hierarchies has been defined (QuakeML-RT).

While developing QuakeML we have kept an eye on similar concepts contained in existing applications like Earthworm\(^2\) and CSS 3.0. For the part dealing with resource identifiers and metadata we have taken inspiration from recent development undertaken in the astrophysical Virtual Observatory community\(^3\).

This document has been distributed among the seismological community as a Request for Comments. The outcome of this process will be considered in subsequent versions. The status of the standardizing process is published on the project web page (http://www.quakeml.org). The contact e-mail address is quakeml@sed.ethz.ch.

\(^1\)Note, however, that the XML format definition given therein is outdated and is superseded by this document.
\(^2\)http://folkworm.ceri.memphis.edu/ew-doc/
\(^3\)http://www.ivoa.net
2 QuakeML Data Model

2.1 UML Class Diagrams

The QuakeML data model has been expressed in a UML4 formulation which serves as a basis for further representations, like XML Schema or SQL database schema. Figs. 1 and 2 show the UML class diagrams for the two QuakeML flavors. Fig. 1 represents the standard (hierarchical) QuakeML version, while Fig. 2 shows the modified variant for real-time processing (QuakeML-RT). In the class diagrams, only two types of relations have been used in order to allow easy transformation to other schemas and for easy automated code generation. “Has-a” relationships are represented by UML compositions and are mapped to parent-child relations in XML. Associations are used to indicate less tight relations between objects.

Elements that are present in both QuakeML flavors are
\begin{itemize}
 \item EventParameters
 \item Event
 \item Origin
 \item OriginUncertainty
 \item Arrival
 \item Pick
 \item Amplitude
 \item Magnitude
 \item StationMagnitude
 \item StationMagnitudeReference
 \item FocalMechanism
 \item MomentTensor
\end{itemize}

QuakeML-RT additionally has elements
\begin{itemize}
 \item Reading
 \item PickReference
 \item AmplitudeReference
 \item OriginReference
 \item MagnitudeReference
 \item FocalMechanismReference
\end{itemize}

Complex data types can be found at the top of the diagrams, enumerations at the bottom.

In the hierarchical model, the class EventParameters is made up of Event objects and represents an earthquake catalog or a seismic bulletin. Event is connected via composition to Origin, Magnitude, FocalMechanism, Amplitude, and Pick, which all describe properties of a specific seismic event.

In QuakeML-RT EventParameters can additionally hold objects of type Origin, Amplitude, Pick, Reading, Magnitude, and FocalMechanism. These are hierarchically on the same level as Event and can be connected to specific events via references. For that purpose, OriginReference, MagnitudeReference, and FocalMechanismReference are bound to Event using compositions. Furthermore, QuakeML-RT has objects of type Reading which are used to group Amplitude and Pick objects which are known to belong to the same event, but the event itself is unknown.

In both variants, Arrival is linked to Origin by composition. Thus, arrivals cannot exist independently from origins. An origin can have several arrivals, but is not required to have any. The connection between Pick and Arrival is quite weak which is expressed by an association. A pick can be related to several arrivals, i.e., concurrent different interpretations of the same amplitude anomaly in a seismogram may exist. StationMagnitude is connected to Origin by composition. This tight binding reflects the fact that information from Origin is required to compute a station magnitude. Amplitude and StationMagnitude as well as Amplitude and Pick are relatively loosely coupled, as expressed by an association. Magnitude describes the “network” magnitude that has been derived from several station magnitudes. It is related to StationMagnitude via the class StationMagnitudeReference and is connected to Origin by association.

A detailed description of the complex types, enumerations, and elements used in the UML class diagrams can be found in Sect. 3.

4The Unified Modeling Language is a general-purpose modeling language that is developed under the auspices of the Object Management Group (http://www.omg.org).
Figure 1: UML class diagram of the QuakeML data model. Two different types of relations between classes are used: (i) compositions, marked by lines with filled diamonds; and (ii) associations, marked by arrows. Compositions indicate a stronger coupling between two classes than associations.
Figure 2: UML class diagram of the QuakeML-RT (real-time processing) data model.
3 XML Serialization

In this Section, we provide a detailed description of the classes used in the QuakeML data models (see the UML class diagrams in Figs. 1 and 2), and of the complex types that are used within these classes.

The last column of the tables describing the class attributes lists the XML representation of attributes which are of basic UML type (int, float, string, datetime, enum). Their XML representation can be either Element, Attribute, or CDATA. This information is contained as tagged values in the UML model and is used by an automated code generator when creating the XML Schema description for QuakeML from the XMI representation of the UML model. In Sect. 3.4 XML format examples are given at the end of each class description.

3.1 Resource Identifiers

In a global network of seismological resources there is a need for a mechanism which allows to unambiguously identify resources. In this context, resources can be of vastly different character, e. g., institutions, working groups, seismic stations, technical equipment, but also algorithms, computer codes or published papers. We propose a naming scheme for resource identifiers which adopts the format of Uniform Resource Identifiers (URIs, Berners-Lee et al. 1988). Identifiers take the generic form of

\[
\text{smi:} \langle \text{authority-id} \rangle / \langle \text{resource-id} \rangle \# \langle \text{local-id} \rangle
\]

They consist of an authority identifier, a unique resource identifier, and an optional local identifier. The URI schema name smi stands for seismicological meta-information, thus indicating a connection to a set of metadata associated with the resource.

The XML Schema definition of QuakeML resource identifiers is as follows:

```xml
<xs:simpleType name="ResourceId"/>
<xs:restriction base="xs:anyURI">
  <xs:pattern value="(smi|quakeml)\:([^/\d.-]*\((\)\))*\([^/\d.-]*\)((\)\))*\([^/\d.-]*\)((\)\))*\([^/\d.-]*\)((\)\)*)?"/>
</xs:restriction>
</xs:simpleType>
```

The authority-id part must consist of at least three characters, of which the first character has to be alphanumeric, and the subsequent characters can be alphanumeric or from the following list: -, _, ., ~, *, ', (,). The resource-id is separated by a forward slash (/) and has to be at least one character long. Allowed characters are alphanumeric and the 8 special characters which are allowed for the authority-id. Additionally, forward slashes are permitted, but not as the first character of the resource-id. Note that the slash which separates authority-id and resource-id is always the first slash in the resource identifier. The resource-id may be followed by a stop character (#) and a local identifier which can be made up of alphanumeric characters, the comma (",") and semicolon (";") characters, and the characters from the following list: -, _, ., ~, *, ', (,), /, +, =, ?. Local identifiers are thought to denote resources that have no own metadata description associated, but are part of a larger collection for which such metadata exists.

The URI schema name prefix is not strictly a part of the resource identifier. Other URI schema names can be used with the identifier in order to retrieve other kinds of information associated with the resource, e.g., quakeml for resources that have a QuakeML representation. For the description of resources which are not officially controlled by an authority, local identifiers can be assigned using the keyword "local" as authority-id.

Resource identifiers are intended to be resolved by registries, i.e., institutions acting as registries will provide web services that will return a metadata description of a resource if queried with a resource identifier as a parameter. The metadata description will be largely based on the Dublin Core vocabulary (Dublin Core Metadata Initiative [XML Metadata Interchange (XMI)](http://www.omg.org/technology/documents/formal/xmi.htm)).
2003) and will provide information on the resource's identity, curation, general, collection and service content, and data quality. In particular, the metadata contain information on how to retrieve the resource, e.g., a URL pointer to an electronic document, or a Web Service description. This mechanism is particularly useful for resources that have a QuakeML representation. In that case, a resource identifier that is used in an extensive QuakeML file can be interpreted as a short cut for a QuakeML chunk that has been left out for conciseness.

The main purpose of the registry mechanism will be the resolution of identifiers which allows subsequent data retrieval in the way outlined above. Beyond this basic functionality, we envision future application of registries as the key infrastructure components for resource discovery. High-quality metadata collections are essential for advanced search services which can be used both by humans and intelligent information retrieval agents.

In the following sections the abbreviation RI is used to denote QuakeML resource identifiers.
3.2 Complex Types

3.2.1 IntegerQuantity / RealQuantity

Physical quantities that can be expressed numerically—either as integers or as floating point numbers—are represented by their measured or computed values and optional values for symmetric or upper and lower uncertainties. The interpretation of these uncertainties is not defined in the standard. They can contain statistically well-defined error measures, but the mechanism can also be used to simply describe a possible value range. Note that uncertainty, upperUncertainty, and lowerUncertainty are not given as absolute values, but as deviations from the main value.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>int / float</td>
<td>1</td>
<td>xs:integer / xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>uncertainty</td>
<td>int / float</td>
<td>0..1</td>
<td>xs:integer / xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>lowerUncertainty</td>
<td>int / float</td>
<td>0..1</td>
<td>xs:integer / xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>upperUncertainty</td>
<td>int / float</td>
<td>0..1</td>
<td>xs:integer / xs:double</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

value Value of the quantity. The unit is implicitly defined and depends on the context.

uncertainty Symmetric uncertainty or boundary.

lowerUncertainty Relative lower uncertainty or boundary.

upperUncertainty Relative upper uncertainty or boundary.

3.2.2 TimeQuantity

This type describes a point in time, given in ISO 8601 format, with optional symmetric or asymmetric uncertainties given in seconds.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>datetime</td>
<td>1</td>
<td>xs:datetime</td>
<td>Element</td>
</tr>
<tr>
<td>uncertainty</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>lowerUncertainty</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>upperUncertainty</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

value Point in time in ISO 8601 format.

uncertainty Symmetric uncertainty of point in time.
Unit: seconds

lowerUncertainty Lower uncertainty of point in time.
Unit: seconds

upperUncertainty Upper uncertainty of point in time.
Unit: seconds
3.2.3 TimeWindow

Describes a time window for amplitude measurements.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>end</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>reference</td>
<td>datetime</td>
<td>1</td>
<td>xs:datetime</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

begin Time interval before **reference** point in time window.
Unit: seconds

end Time interval after **reference** point in time window.
Unit: seconds

reference Reference point in time ("central" point), in ISO 8601 format.

3.2.4 WaveformStreamID

Pointer to a stream description in an inventory. This is mostly equivalent to the combination of **networkCode**, **stationCode**, **locationCode**, and **channelCode**. However, additional information, e.g., sampling rate, can be referenced by the **resourceURI**.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>networkCode</td>
<td>string</td>
<td>1</td>
<td>xs:string</td>
<td>Attribute</td>
</tr>
<tr>
<td>stationCode</td>
<td>string</td>
<td>1</td>
<td>xs:string</td>
<td>Attribute</td>
</tr>
<tr>
<td>channelCode</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Attribute</td>
</tr>
<tr>
<td>locationCode</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Attribute</td>
</tr>
<tr>
<td>resourceURI</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>CDATA</td>
</tr>
</tbody>
</table>

Description of Attributes

networkCode Network code.

stationCode Station code.

channelCode Channel code.

locationCode Location code.

resourceURI Resource identifier for the waveform stream. QuakeML adopts in many places resource descriptors with a well-defined syntax for unambiguous resource identification. A brief introduction to the concept of resource identifiers can be found in Sect. 3.1. Resource identifiers are designed to be backward compatible with existing descriptors.
3.2.5 Phase

Generic and extensible phase description that currently contains the phase code only.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
<td>string</td>
<td>1</td>
<td>xs:string</td>
<td>CDATA</td>
</tr>
</tbody>
</table>

Description of Attributes

code Phase code as given in the IASPEI Standard Seismic Phase List (Storchak et al. 2003).

3.2.6 CompositeTime

Focal times differ significantly in their precision. While focal times of instrumentally located earthquakes are estimated precisely down to seconds, historic events have only incomplete time descriptions. Sometimes, even contradictory information about the rupture time exist. The CompositeTime type allows for such complex descriptions.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>IntegerQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>month</td>
<td>IntegerQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>day</td>
<td>IntegerQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>hour</td>
<td>IntegerQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>minute</td>
<td>IntegerQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>second</td>
<td>RealQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>differenceToUTC</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

year Year or range of years of the event’s focal time.

month Month or range of months of the event’s focal time.

day Day or range of days of the event’s focal time.

hour Hour or range of hours of the event’s focal time.

minute Minute or range of minutes of the event’s focal time.

second Second and fraction of seconds or range of seconds with fraction of the event’s focal time.

differenceToUTC Difference of the timezone of the event to UTC. This generic difference replaces pre-defined timezones and information about daylight saving time as their rules are very complex and not applicable to historic events.

Unit: decimal hours
3.2.7 OriginQuality

This type contains various attributes commonly used to describe the quality of an origin, e.g., errors, azimuthal coverage, etc. Origin objects have an optional attribute of the type OriginQuality.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>associatedPhaseCount</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>usedPhaseCount</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>associatedStationCount</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>usedStationCount</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>depthPhaseCount</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>standardError</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>azimuthalGap</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>secondaryAzimuthalGap</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>groundTruthLevel</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>minimumDistance</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>maximumDistance</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>medianDistance</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

associatedPhaseCount Number of associated phases, regardless of their use for origin computation.

usedPhaseCount Number of defining phases, i.e., phase observations that were actually used for computing the origin. Note that there may be more than one defining phase per station.

associatedStationCount Number of stations at which the event was observed.

usedStationCount Number of stations from which data was used for origin computation.

depthPhaseCount Number of depth phases (typically pP, sometimes sP) used in depth computation.

standardError RMS of the travel time residuals of the arrivals used for the origin computation.

Unit: seconds

azimuthalGap Largest azimuthal gap in station distribution as seen from epicenter.

Unit: degrees

secondaryAzimuthalGap Secondary azimuthal gap in station distribution, i.e., the largest azimuthal gap a station closes.

Unit: degrees

groundTruthLevel String describing ground-truth level, e.g., GT0, GT5, etc.

minimumDistance Epicentral distance of station closest to the epicenter.

Unit: km

maximumDistance Epicentral distance of station farthest from the epicenter.

Unit: km

medianDistance Median epicentral distance of used stations.

Unit: km
3.2.8 ConfidenceEllipsoid

This class represents a description of the location uncertainty as a confidence ellipsoid.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>azimuth1</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>dip1</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>standardError1</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>azimuth2</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>dip2</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>standardError2</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>standardError3</td>
<td>float</td>
<td>1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

azimuth1 Azimuth of major axis.
Unit: degrees

dip1 Dip of major axis.
Unit: degrees

standardError1 Standard error (semi-major axis length).
Unit: km

azimuth2 Azimuth of minor axis.
Unit: degrees

dip2 Dip of minor axis.
Unit: degrees

standardError2 Standard error (semi-minor axis length).
Unit: km

standardError3 Standard error in direction orthogonal to major and minor axis.
Unit: km
3.2.9 NodalPlanes

This class describes the nodal planes of a double-couple moment-tensor solution. The attribute `preferredPlane` can be used to define which plane is the preferred one.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>nodalPlane1</td>
<td>NodalPlane</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>nodalPlane2</td>
<td>NodalPlane</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>preferredPlane</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

Description of Attributes

- **nodalPlane1** First nodal plane of double-couple moment tensor solution.
- **nodalPlane2** Second nodal plane of double-couple moment tensor solution.
- **preferredPlane** Indicator for preferred nodal plane of moment tensor solution. It can take integer values 1 or 2.

XML code example See Sect. 3.4.6.

3.2.10 PrincipalAxes

This class describes the principal axes of a double-couple moment tensor solution. `tAxis` and `pAxis` are required, while `nAxis` is optional.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>tAxis</td>
<td>Axis</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>pAxis</td>
<td>Axis</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>nAxis</td>
<td>Axis</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

- **tAxis** T axis of a double-couple moment tensor solution.
- **pAxis** P axis of a double-couple moment tensor solution.
- **nAxis** N axis of a double-couple moment tensor solution.

XML code example See Sect. 3.4.6.
3.2.11 NodalPlane

This class describes a nodal plane using the attributes strike, dip, and rake. For a definition of the angles see Aki & Richards (1980).

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>strike</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>dip</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>rake</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

strike Strike angle of nodal plane.
 Unit: degrees

dip Dip angle of nodal plane.
 Unit: degrees

rake Rake angle of nodal plane.
 Unit: degrees

XML code example See Sect. 3.4.6.

3.2.12 Axis

This class describes an eigenvector of a moment tensor expressed in its principal-axes system. It uses the angles azimuth, plunge, and the eigenvalue length.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>azimuth</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>plunge</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>length</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

azimuth Azimuth of eigenvector of moment tensor expressed in principal-axes system.
 Unit: degrees

plunge Plunge of eigenvector of moment tensor expressed in principal-axes system.
 Unit: degrees

length Eigenvalue of moment tensor expressed in principal-axes system.
 Unit: dyn · cm

XML code example See Sect. 3.4.6.
3.2.13 Tensor

The Tensor class represents the six moment-tensor elements M_{rr}, M_{tt}, M_{pp}, M_{rt}, M_{rp}, M_{tp}, where r is up, t is south, and p is east. See Aki & Richards (1980) for conversions to other coordinate systems.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrr</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mtt</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mpp</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mrt</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mrp</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mtp</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

Mrr Moment-tensor element M_{rr}.
 \textit{Unit: dyn} \cdot \textit{cm}

Mtt Moment-tensor element M_{tt}.
 \textit{Unit: dyn} \cdot \textit{cm}

Mpp Moment-tensor element M_{pp}.
 \textit{Unit: dyn} \cdot \textit{cm}

Mrt Moment-tensor element M_{rt}.
 \textit{Unit: dyn} \cdot \textit{cm}

Mrp Moment-tensor element M_{rp}.
 \textit{Unit: dyn} \cdot \textit{cm}

Mtp Moment-tensor element M_{tp}.
 \textit{Unit: dyn} \cdot \textit{cm}

XML code example See Sect. 3.4.7.
3.2.14 DataUsed

This class describes the type of data that has been used for a moment-tensor inversion.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveType</td>
<td>enum (DataUsedWaveType)</td>
<td>1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>stationCount</td>
<td>int</td>
<td>1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>componentCount</td>
<td>int</td>
<td>1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>shortestPeriod</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

waveType Type of waveform data. This can be one of the following values:

- body waves
- P body waves
- long-period body waves
- surface waves
- intermediate-period surface waves
- long-period mantle waves
- unknown

stationCount Number of stations that have contributed data of the type given in waveType.

componentCount Number of data components of the type given in waveType.

shortestPeriod Shortest period present in data.

Unit: seconds
3.2.15 SourceTimeFunction

Source time function used in moment-tensor inversion.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td><code>enum (SourceTimeFunctionType)</code></td>
<td>1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>duration</td>
<td><code>float</code></td>
<td>1</td>
<td><code>xs:double</code></td>
<td>Element</td>
</tr>
<tr>
<td>riseTime</td>
<td><code>float</code></td>
<td>0..1</td>
<td><code>xs:double</code></td>
<td>Element</td>
</tr>
<tr>
<td>decayTime</td>
<td><code>float</code></td>
<td>0..1</td>
<td><code>xs:double</code></td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

type Type of source time function. Values can be taken from the following:

\[\text{SourceTimeFunction (enum)} \]
- box_car
- triangle
- trapezoid
- unknown
duration Source time function duration.
 \[Unit: \text{seconds} \]
riseTime Source time function rise time.
 \[Unit: \text{seconds} \]
decayTime Source time function decay time.
 \[Unit: \text{seconds} \]
3.2.16 EventDescription

Free-form string with additional event description. This can be a well-known name, like 1906 San Francisco Earthquake. A number of categories can be given in type.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>string</td>
<td>1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>type</td>
<td>enum (EventDescriptionType)</td>
<td>0..1</td>
<td>-</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

text Free-from text with earthquake description.

type Category of earthquake description. Values can be taken from the following:

EventDescriptionType (enum)
- felt report
- Flinn-Engdahl region
- local time
- tectonic summary
- nearest cities
- earthquake name
- region name
3.2.17 CreationInfo

CreationInfo is used to describe author, version, and creation time of a resource.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>agencyID</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>agencyURI</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>author</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>authorURI</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>creationTime</td>
<td>datetime</td>
<td>0..1</td>
<td>xs:dateTime</td>
<td>Element</td>
</tr>
<tr>
<td>version</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
</tbody>
</table>

Description of Attributes

- **agencyID**: Designation of agency that published a resource.
- **agencyURI**: RI of the agency that published a resource.
- **author**: Name describing the author of a resource.
- **authorURI**: RI of the author of a resource.
- **creationTime**: Time of creation of a resource, in ISO 8601 format.
- **version**: Version string of a resource.

3.2.18 Comment

Comment holds information on comments to a resource as well as author and creation time information.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td>string</td>
<td>1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>id</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

- **text**: Text of comment.
- **id**: Identifier of comment, in QuakeML resource identifier format.
- **creationInfo**: Creation info of comment (author, version, creation time).
3.3 Common Enumerations

In this section enumerations that are used in more than one class are listed. Enumerations which are specific to only one class are presented within the context of the class.

3.3.1 EvaluationMode

Mode of an evaluation (used in Pick, Amplitude, Origin). Allowed values are

- automatic
- manual.

3.3.2 EvaluationStatus

Status of an evaluation (used in Pick, Origin). Allowed values are

- preliminary
- confirmed
- rejected.
3.4 Elements

3.4.1 EventParameters

In the standard model, this class serves as a container for Event objects. In the real-time version, it can hold objects of type Event, Origin, Magnitude, FocalMechanism, Reading, Amplitude, and Pick.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of EventParameters.

comment Additional comments.

creationInfo Creation info.

XML example

```xml
<eventParameters publicID="smi:ch.ethz.sed/catalog/switzerland/1">
  <event>...</event>
  <event>...</event>
  <event>...</event>
</eventParameters>
```
3.4.2 Event

The class *Event* describes a seismic event which does not necessarily need to be a tectonic earthquake. An event is usually associated with one or more origins, which contain information about focal time and geographical location of the event. Multiple origins can cover automatic and manual locations, a set of location from different agencies, locations generated with different location programs and earth models, etc. Furthermore, an event is usually associated with one or more magnitudes, and with one or more focal mechanism determinations. In standard QuakeML, *Origin*, *Magnitude*, and *FocalMechanism* are child elements of *Event*. In QuakeML-RT all these elements are on the same hierarchy level as child elements of *EventParameters*. The association of origins, magnitudes, and focal mechanisms to a particular event is expressed using elements *OriginReference*, *MagnitudeReference*, and *FocalMechanismReference* as child elements of *Event* (see Sects. 3.4.16–3.4.18).

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>preferredOriginID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>preferredMagnitudeID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>preferredFocalMechanismID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>type</td>
<td>enum (EventType)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>description</td>
<td>EventDescription</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of *Event*.

preferredOriginID Refers to the publicID of the preferred *Origin* object.

preferredMagnitudeID Refers to the publicID of the preferred *Magnitude* object.

preferredFocalMechanismID Refers to the publicID of the preferred *FocalMechanism* object.

type Describes the type of an event. Allowed values are the following:

EventType (enum)

- earthquake
- building collapse
- chemical explosion
- debris avalanche
- explosion
- landslide
- meteor impact
- mine collapse
- nuclear explosion
- plane crash
- quarry blast
- rockslide
- sonic boom
- volcanic eruption
- not existent
- null
- other

description Additional event description, like earthquake name, Flinn-Engdahl region, etc.

comment Comments.

creationInfo Creation information.

XML example

```xml
<event publicID="smi:ch.ethz.sed/event/historical/1165">
  <preferredOriginID>smi:ch.ethz.sed/origin/2054</preferredOriginID>
  <preferredMagnitudeID>smi:ch.ethz.sed/magnitude/1015</preferredMagnitudeID>
  <preferredFocalMechanismID>smi:ch.ethz.sed/fm/23151</preferredFocalMechanismID>
  <type>earthquake</type>
  <description>
    <text>1906 San Francisco Earthquake</text>
  </description>
  <type>earthquake name</type>
  <comment>
    <text>Relocated after re-evaluation of historical intensity reports</text>
  </comment>
</event>
```
3.4.3 Origin

This class represents the focal time and geographical location of an earthquake hypocenter, as well as additional meta-information. `Origin` can have objects of type `OriginUncertainty`, `Arrival`, and `StationMagnitude` as child elements.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>time</td>
<td>TimeQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>latitude</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>longitude</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>depth</td>
<td>RealQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>depthType</td>
<td>enum (OriginDepthType)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>referenceSystemID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>methodID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>earthModelID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>compositeTime</td>
<td>CompositeTime</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>quality</td>
<td>OriginQuality</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>type</td>
<td>enum (OriginType)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>evaluationMode</td>
<td>enum (EvaluationMode)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>evaluationStatus</td>
<td>enum (EvaluationStatus)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of `Origin`.

time Focal time.

latitude Hypocenter latitude.

Unit: degrees

longitude Hypocenter longitude.

Unit: degrees

depth Depth of hypocenter.

Unit: km

depthType Type of depth determination. Allowed values are the following:

- `OriginDepthType` (enum)
 - from location
 - constrained by depth phases
 - constrained by direct phases
 - operator assigned
 - other.

referenceSystemID Identifies the reference system used for hypocenter determination.

methodID Identifies the method used for locating the event.
earthModelID Identifies the earth model used in **methodID**.

compositeTime Supplementary information on time of rupture start. Complex descriptions of focal times of historic event are possible, see description of the **CompositeTime** type.

quality Additional parameters describing the quality of an origin determination.

type Describes the origin type. Allowed values are the following:

- **OriginType** (enum)
 - rupture start
 - centroid
 - rupture end
 - hypocenter
 - amplitude
 - macroseismic

evaluationMode Evaluation mode of **Origin** (see Sect. 3.3.1).

evaluationStatus Evaluation status of **Origin** (see Sect. 3.3.2).

comment Additional comments.

creationInfo Creation info.

XML example

```xml
<origin publicID="smi:org.globalcmt/origin/C200501010120A">
  <time>
    <value>2005-01-01T01:20:05.1Z</value>
    <uncertainty>0.9</uncertainty>
  </time>
  <latitude>
    <value>13.76</value>
    <uncertainty>0.06</uncertainty>
  </latitude>
  <longitude>
    <value>-89.08</value>
    <uncertainty>0.09</uncertainty>
  </longitude>
  <depth>
    <value>162.8</value>
    <uncertainty>12.5</uncertainty>
  </depth>
  <depthType>from moment tensor inversion</depthType>
</origin>
```
3.4.4 OriginUncertainty

This class describes the location uncertainties of an origin. The uncertainty can be described either as a simple circular horizontal uncertainty, an uncertainty ellipse according to IMS1.0, or a confidence ellipsoid. The preferred variant can be given in the attribute `preferredDescription`.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>preferredDescription</td>
<td>enum</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>horizontalUncertainty</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>minHorizontalUncertainty</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>maxHorizontalUncertainty</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>azimuthMaxHorizontalUncertainty</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>confidenceEllipsoid</td>
<td>ConfidenceEllipsoid</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

`preferredDescription` Preferred uncertainty description. Allowed values are the following:

OriginUncertaintyDescription (enum)
- horizontal uncertainty
- uncertainty ellipse
- confidence ellipsoid
- probability density function

horizontalUncertainty Circular confidence region, given by single value of horizontal uncertainty.

Unit: km

minHorizontalUncertainty Semi-major axis of confidence ellipse.

Unit: km

maxHorizontalUncertainty Semi-minor axis of confidence ellipse.

Unit: km

azimuthMaxHorizontalUncertainty Azimuth of major axis of confidence ellipse.

Unit: degrees

confidenceEllipsoid Confidence ellipsoid (see Sect. 3.2.8).

XML example

```xml
<originUncertainty>
  <preferredDescription>uncertainty ellipse</preferredDescription>
  <horizontalUncertainty>9</horizontalUncertainty>
  <minHorizontalUncertainty>6</minHorizontalUncertainty>
  <maxHorizontalUncertainty>10</maxHorizontalUncertainty>
  <azimuthMaxHorizontalUncertainty>80.0</azimuthMaxHorizontalUncertainty>
</originUncertainty>
```
3.4.5 Magnitude

Describes a magnitude which can, but need not be associated with an Origin. Association with an origin is expressed with the optional attribute originID. It is either a combination of different magnitude estimations, or it represents the reported magnitude for the given Event.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>mag</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>type</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>originID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>methodID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>stationCount</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>azimuthalGap</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of Magnitude.

mag Resulting magnitude value from combining values of type StationMagnitude. If no estimations are available, this value can represent the reported magnitude.

type Describes the type of magnitude. This is a free-text field because it is impossible to cover all existing magnitude type designations with an enumeration. Possible values are unspecified magnitude (M), local magnitude (ML), body wave magnitude (Mb), surface wave magnitude (MS), moment magnitude (Mw), duration magnitude (Md), coda magnitude (Mc), MH, Mwp, M50, M100, etc.

originID Reference to an origin’s publicID if the magnitude has an associated Origin.

methodID Identifies the method of magnitude estimation. Users should avoid to give contradictory information in methodID and type.

stationCount Number of used stations for this magnitude computation.

azimuthalGap Azimuthal gap for this magnitude computation.

Unit: degrees

comment Additional comments.

creationInfo Creation info.

XML example

```xml
<magnitude publicID="smi:ch.ethz.sed/magnitude/37465">
  <mag>
    <value>5.5</value>
    <uncertainty>0.1</uncertainty>
  </mag>
  <type>MS</type>
  <methodID>smi:ch.ethz.sed/magnitude/generic/surface_wave_magnitude</methodID>
  <stationCount>8</stationCount>
</magnitude>
```
3.4.6 FocalMechanism

This class describes the focal mechanism of an Event. It includes different descriptions like nodal planes, principal axes, and a moment tensor. The moment tensor description is provided by objects of the class MomentTensor which can be given as child elements of FocalMechanism.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>triggeringOriginID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>nodalPlanes</td>
<td>NodalPlanes</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>principalAxes</td>
<td>PrincipalAxes</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>azimuthalGap</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>stationPolarityCount</td>
<td>int</td>
<td>0..1</td>
<td>xs:integer</td>
<td>Element</td>
</tr>
<tr>
<td>misfit</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>stationDistributionRatio</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>methodID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of FocalMechanism.

triggeringOriginID Refers to the publicID of the triggering origin.

nodalPlanes Nodal planes of the focal mechanism.

principalAxes Principal axes of the focal mechanism.

azimuthalGap Largest azimuthal gap in distribution of stations used for determination of focal mechanism.
Unit: degrees

stationPolarityCount Number of station polarities used for determination of focal mechanism.

misfit Fraction of misfit polarities in a first-motion focal mechanism determination. Fractional value between 0 and 1.

stationDistributionRatio Station distribution ratio (STDR) parameter. Indicates how the stations are distributed about the focal sphere. Fractional value between 0 and 1.

methodID Resource identifier of the method used for determination of the focal mechanism.

comment Additional comments.

creationInfo Creation information.
<focalMechanism publicID="smi:org.globalcmt/fm/C200501010120A">
 <nodalPlanes>
 <nodalPlane1>
 <strike>
 <value>9.0</value>
 </strike>
 <dip>
 <value>29.0</value>
 </dip>
 <rake>
 <value>142.0</value>
 </rake>
 </nodalPlane1>
 <nodalPlane2>
 <strike>
 <value>133.0</value>
 </strike>
 <dip>
 <value>72.0</value>
 </dip>
 <rake>
 <value>66.0</value>
 </rake>
 </nodalPlane2>
 </nodalPlanes>
 <principalAxes>
 <tAxis>
 <azimuth>
 <value>12.0</value>
 </azimuth>
 <plunge>
 <value>56.0</value>
 </plunge>
 <length>
 <value>1.581e23</value>
 </length>
 </tAxis>
 <pAxis>
 <azimuth>
 <value>140.0</value>
 </azimuth>
 <plunge>
 <value>23.0</value>
 </plunge>
 <length>
 <value>-0.537e23</value>
 </length>
 </pAxis>
 ...
 </principalAxes>
</focalMechanism>
3.4.7 MomentTensor

This class represents a moment tensor solution for an Event. It is part of a FocalMechanism description.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>derivedOriginID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>triggeringOriginID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>momentMagnitudeID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>scalarMoment</td>
<td>RealQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>tensor</td>
<td>Tensor</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>variance</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>varianceReduction</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>doubleCouple</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>clvd</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>iso</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>greensFunctionID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>filterID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>sourceTimeFunction</td>
<td>SourceTimeFunction</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>dataUsed</td>
<td>DataUsed</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>methodID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>method</td>
<td>enum (MomentTensorMethod)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>status</td>
<td>enum (MomentTensorStatus)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>cmtName</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>cmtVersion</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

- **derivedOriginID** Refers to the publicID of the Origin derived in the moment tensor inversion.
- **triggeringOriginID** Refers to the publicID of the triggering Origin.
- **momentMagnitudeID** Refers to the publicID of the Magnitude object which represents the derived moment magnitude.
- **scalarMoment** Scalar moment as derived in moment tensor inversion.
 \[\text{Unit: dyn \cdot cm} \]
- **tensor** Tensor object holding the moment tensor elements.
- **variance** Variance of moment tensor inversion.
- **varianceReduction** Variance reduction of moment tensor inversion.
- **doubleCouple** Double couple parameter obtained from moment tensor inversion (fractional value between 0 and 1).
- **clvd** CLVD (compensated linear vector dipole) parameter obtained from moment tensor inversion (fractional value between 0 and 1).
- **iso** Isotropic part obtained from moment tensor inversion (fractional value between 0 and 1).
- **greensFunctionID** Resource identifier of the Green’s function used in moment tensor inversion.
filterID Resource identifier of the filter setup used in moment tensor inversion.

sourceTimeFunction Source time function used in moment-tensor inversion.

dataUsed Describes waveform data used for moment-tensor inversion.

methodID Resource identifier of the method used for moment-tensor inversion.

method Method used for moment tensor inversion. Users should avoid to give contradictory information in method and methodID. Valid entries are given in the following list:

MomentTensorMethod (enum)

- CMT - general moment tensor
- CMT - moment tensor with zero trace
- CMT - double-couple source
- teleseismic
- regional

status Status of moment tensor inversion. Valid entries are given in the following list:

MomentTensorStatus (enum)

- standard CMT solution
- quick CMT solution

cmtName Name describing CMT solution, as given in ndk\(^6\) format.

cmtVersion Version of code used for CMT solution, as given in ndk format.

comment Additional comments.

creationInfo Creation information.

\(^6\)http://www.ldeo.columbia.edu/~gcmt/projects/CMT/catalog/allorder.ndk_explained
XML example

```xml
<momentTensor>
  <derivedOriginID>smi:org.globalcmt/origin/C200501010120A</derivedOriginID>
  <scalarMoment>
    <value>1.312e23</value>
  </scalarMoment>
  <tensor>
    <Mrr>
      <value>0.838e23</value>
      <uncertainty>0.201e23</uncertainty>
    </Mrr>
    <Mtt>
      <value>-0.005e23</value>
      <uncertainty>0.231e23</uncertainty>
    </Mtt>
    <Mpp>
      <value>-0.833e23</value>
      <uncertainty>0.270e23</uncertainty>
    </Mpp>
    <Mrt>
      <value>1.050e23</value>
      <uncertainty>0.121e23</uncertainty>
    </Mrt>
    <Mrp>
      <value>-0.369e23</value>
      <uncertainty>0.161e23</uncertainty>
    </Mrp>
    <Mtp>
      <value>0.044e23</value>
      <uncertainty>0.240e23</uncertainty>
    </Mtp>
  </tensor>
  <dataUsed>
    <waveType>long-period body waves</waveType>
    <stationCount>4</stationCount>
    <componentCount>4</componentCount>
    <shortestPeriod>40.0</shortestPeriod>
  </dataUsed>
  <sourceTimeFunction>
    <type>triangle</type>
    <duration>0.6</duration>
  </sourceTimeFunction>
  <method>CMT - moment-tensor with constraint of zero trace</method>
  <status>standard CMT solution</status>
  <cmtName>C200501010120A</cmtName>
  <cmtVersion>V10</cmtVersion>
  <creationInfo>
    <creationTime>2005-03-22T12:52:01</creationTime>
  </creationInfo>
</momentTensor>
```
3.4.8 StationMagnitude

This class describes the magnitude derived from a single waveform stream.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mag</td>
<td>RealQuantity</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>type</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>stationAmplitudeID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>waveformID</td>
<td>WaveformStreamID</td>
<td>0..1</td>
<td>RI</td>
<td>-</td>
</tr>
<tr>
<td>methodID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Description of Attributes

mag Estimated magnitude.

type See class *Magnitude* (Sect. 3.4.5).

stationAmplitudeID Identifies the data source of the *StationMagnitude*. For magnitudes derived from amplitudes in waveforms (e.g., local magnitude M_L), **stationAmplitudeID** points to publicID in class *Amplitude*.

waveformID Identifies the waveform stream.

methodID See class *Magnitude* (Sect. 3.4.5).

comment Additional comments.

creationInfo Creation info.

XML example

```xml
<stationMagnitude publicID="smi:ch.ethz.sed/magnitude/station/881342">
  <mag>
    <value>6.5</value>
    <uncertainty>0.2</uncertainty>
  </mag>
  <methodID>smi:ch.ethz.sed/magnitude/generic/surface_wave_magnitude</methodID>
  <stationAmplitudeID>smi:ch.ethz.sed/amplitude/824315</stationAmplitudeID>
  <type>MS</type>
  <waveformID>smi:ch.ethz.sed/waveform/201754</waveformID>
</stationMagnitude>
```
3.4.9 StationMagnitudeReference

This class describes the weighting of magnitude values from several StationMagnitude objects for computing Magnitude estimations.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>stationMagnitudeID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>CDATA</td>
</tr>
<tr>
<td>residual</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Attribute</td>
</tr>
<tr>
<td>weight</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

Description of Attributes

stationMagnitudeID Refers to the publicID of a StationMagnitude object.

residual Residual of magnitude computation.

weight Weight of the magnitude value from class StationMagnitude for computing the magnitude value in class Magnitude.

XML example

```
<stationMagnitudeReference weight="0.15">
  smi:ch.ethz.sed/magnitude/station/55897
</stationMagnitudeReference>
```
3.4.10 Arrival

Successful association of a pick with an origin qualifies this pick as an arrival. An arrival thus connects a pick with an origin and provides additional attributes that describe this relationship. Usually qualification of a pick as an arrival for a given origin is a hypothesis, which is based on assumptions about the type of arrival (phase) as well as observed and (on the basis of an earth model) computed arrival times, or the residual, respectively. Additional pick attributes like the slowness and azimuth of the observed wave—especially if derived from array data—may further constrain the nature of the arrival.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pickID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>phase</td>
<td>Phase</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>timeCorrection</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>azimuth</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>distance</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>residual</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>weight</td>
<td>float</td>
<td>0..1</td>
<td>xs:double</td>
<td>Element</td>
</tr>
<tr>
<td>earthModelID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

- **pickID** Refers to a **publicID** of a **Pick**.
- **phase** Phase identification.
- **timeCorrection** Time correction value.
 Unit: seconds
- **azimuth** Azimuth of station as seen from the epicenter.
 Unit: degrees
- **distance** Epicentral distance.
 Unit: km
- **residual** Residual between observed and expected arrival time assuming proper phase identification and given the **earthModelID** of the **Origin**.
 Unit: seconds
- **weight** Weight of this **Arrival** in the computation of the associated **Origin**.
- **earthModelID** Earth model which is used for the association of **Arrival** to **Pick** and computation of the residuals.
- **comment** Additional comments.
- **creationInfo** Creation info.
XML example

<arrival>
 <pickID>smi:ch.ethz.sed/pick/117634</pickID>
 <phase>Pn</phase>
 <azimuth>12.0</azimuth>
 <distance>45.0</distance>
 <residual>1.0</residual>
 <weight>0.5</weight>
 <earthModelID>smi:ch.ethz.sed/earthmodel/U21</earthModelID>
</arrival>
3.4.11 Pick

A pick is the observation of an amplitude anomaly in a seismogram. It is not necessarily related to a seismic event.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>time</td>
<td>TimeQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>waveformID</td>
<td>WaveformStreamID</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>filterID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>methodID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>azimuth</td>
<td>RealQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>onset</td>
<td>enum (PickOnset)</td>
<td>–</td>
<td>0..1</td>
<td>Element</td>
</tr>
<tr>
<td>phaseHint</td>
<td>Phase</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>polarity</td>
<td>enum (PickPolarity)</td>
<td>–</td>
<td>0..1</td>
<td>Element</td>
</tr>
<tr>
<td>slowness</td>
<td>RealQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>evaluationMode</td>
<td>enum (EvaluationMode)</td>
<td>–</td>
<td>0..1</td>
<td>Element</td>
</tr>
<tr>
<td>evaluationStatus</td>
<td>enum (EvaluationStatus)</td>
<td>–</td>
<td>0..1</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of Pick.

time Observed onset time ("pick time").

waveformID Identifies the waveform stream.

filterID Identifies the filter or filter setup used for filtering the waveform stream referenced by waveformID.

methodID Identifies the picker that produced the pick. This can be either an autopicker program or a person.

azimuth Observed azimuth of the signal. Most relevant in array measurements.
 Unit: degrees

onset Flag that roughly categorizes the sharpness of the onset. Allowed values are:
 PickOnset (enum)
 • impulsive
 • emergent
 • questionable.

phaseHint Tentative phase identification as specified by the picker.

polarity Indicates the polarity of first motion, usually from impulsive onsets. Allowed values are:
 PickPolarity (enum)
 • up
 • down
 • undecidable

slowness Observed slowness of the signal. Most relevant in array measurements.
 Unit: s · km⁻¹
evaluationMode Evaluation mode of Pick (see Sect. 3.3.1).

evaluationStatus Evaluation status of Pick (see Sect. 3.3.2).

comment Additional comments.

creationInfo Creation info.

XML example

```xml
<pick publicID="smi:ch.ethz.sed/pick/117634">
  <time>
    <value>2005-09-18T22:04:35Z</value>
    <uncertainty>0.012</uncertainty>
  </time>
  <waveformID>smi:ch.ethz.sed/waveform/201754</waveformID>
  <filterID>smi:ch.ethz.sed/filter/lowpass/standard</filterID>
  <methodID>smi:ch.ethz.sed/picker/autopicker/6.0.2</methodID>
  <azimuth>
    <value>44.0</value>
  </azimuth>
  <onset>impulsive</onset>
  <phaseHint>Pn</phaseHint>
  <polarity>up</polarity>
  <evaluationMode>manual</evaluationMode>
  <evaluationStatus>confirmed</evaluationStatus>
</pick>
```
3.4.12 Amplitude

This class represents a single amplitude measurement or a measurement of the visible end of a record for duration magnitudes.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
<tr>
<td>amp</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>type</td>
<td>string</td>
<td>1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>period</td>
<td>RealQuantity</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>pickID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>waveformID</td>
<td>WaveformStreamID</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>filterID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>methodID</td>
<td>string</td>
<td>0..1</td>
<td>RI</td>
<td>Element</td>
</tr>
<tr>
<td>timeWindow</td>
<td>TimeWindow</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>scalingTime</td>
<td>TimeQuantity</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>magnitudeHint</td>
<td>string</td>
<td>0..1</td>
<td>xs:string</td>
<td>Element</td>
</tr>
<tr>
<td>evaluationMode</td>
<td>enum (EvaluationMode)</td>
<td>0..1</td>
<td>–</td>
<td>Element</td>
</tr>
<tr>
<td>comment</td>
<td>Comment</td>
<td>0..*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>creationInfo</td>
<td>CreationInfo</td>
<td>0..1</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of Amplitude.

amp Measured amplitude value for the given waveformID.

Unit: \(\mu m \)

type Describes the type of amplitude using the nomenclature from Storchak et al. (2003). Possible values are unspecified amplitude reading (A), amplitude reading for local magnitude (AL), amplitude reading for body wave magnitude (AB), amplitude reading for surface wave magnitude (AS), and time of visible end of record for duration magnitude (END).

period Measured period in the timeWindow in case of amplitude measurements. Not used for duration magnitude.

Unit: seconds

pickID Refers to the publicID of an associated Pick object.

waveformID Identifies the waveform stream on which the amplitude was measured.

filterID Identifies the filter or filter setup used for filtering the waveform stream referenced by waveformID.

methodID Describes the method of amplitude determination.

timeWindow Description of the time window used for amplitude measurement. Mandatory for duration magnitudes.

scalingTime Scaling time for amplitude measurement.

magnitudeHint Type of magnitude the amplitude measurement is used for. For valid values see class Magnitude (Sect. 3.4.5).

evaluationMode Evaluation mode of Amplitude (see Sect. 3.3.1).

comment Additional comments.
XML example

```xml
<amplitude publicID="smi:ch.ethz.sed/amplitude/962435">
  <amp>
    <value>1354</value>
    <uncertainty>12</uncertainty>
  </amp>
  <type>AL</type>
  <period>
    <value>1.0</value>
  </period>
  <pickID>smi:ch.ethz.sed/pick/20238</pickID>
  <waveformID>smi:ch.ethz.sed/waveform/33826</waveformID>
  <filterID>smi:ch.ethz.sed/filter/wood_anderson/1.2</filterID>
  <methodID>smi:ch.ethz.sed/amplitude/generic/AL</methodID>
  <timeWindow>
    <begin>20.0</begin>
    <end>20.0</end>
    <reference>2004-11-23T17:12:08-02</reference>
  </timeWindow>
</amplitude>
```
3.4.13 Reading

Used only in QuakeML-RT as child element of EventParameters. This class groups Pick and Amplitude elements which are thought to belong to the same Event, but for which the event identification is not known.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>publicID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>Attribute</td>
</tr>
</tbody>
</table>

Description of Attributes

publicID Resource identifier of Reading.

XML example

```
<reading publicID="smi:ch.ethz.sed/reading/962435">
  <pickReference>smi:ch.ethz.sed/pick/924235</pickReference>
  <amplitudeReference>smi:ch.ethz.sed/amlitude/367523</amplitudeReference>
</reading>
```

3.4.14 PickReference

Used only in QuakeML-RT. PickReference elements are child elements of Reading and reference a Pick which is part of a reading.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pickID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>CDATA</td>
</tr>
</tbody>
</table>

Description of Attributes

pickID Reference to the publicID of a Pick object.

3.4.15 AmplitudeReference

Used only in QuakeML-RT. AmplitudeReference elements are child elements of Reading and reference an Amplitude which is part of a reading.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>amplitudeID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>CDATA</td>
</tr>
</tbody>
</table>

Description of Attributes

amplitudeID Reference to the publicID of an Amplitude object.
3.4.16 OriginReference

Used only in QuakeML-RT. OriginReference elements are child elements of Event and reference an Origin which is associated to the event.

This class associates an origin to an event.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>originID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>CDATA</td>
</tr>
</tbody>
</table>

Description of Attributes

originID Refers to the publicID of an associated Origin object.

XML example

<originReference>smi:ch.ethz.sed/origin/422054</originReference>

3.4.17 MagnitudeReference

Used only in QuakeML-RT. MagnitudeReference elements are child elements of Event and reference a Magnitude which is associated to the event.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>magnitudeID</td>
<td>string</td>
<td>[string, 1]</td>
<td>RI</td>
<td>CDATA</td>
</tr>
</tbody>
</table>

Description of Attributes

magnitudeID [string, 1]

Refers to the publicID of an associated Magnitude object.

XML example

<magnitudeReference>smi:ch.ethz.sed/magnitude/2013254</magnitudeReference>
3.4.18 FocalMechanismReference

Used only in QuakeML-RT. *FocalMechanismReference* elements are child elements of *Event* and reference a *FocalMechanism* which is associated to the event.

List of Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>UML Type</th>
<th>Multiplicity</th>
<th>XML Type</th>
<th>XML Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>focalMechanismID</td>
<td>string</td>
<td>1</td>
<td>RI</td>
<td>CDATA</td>
</tr>
</tbody>
</table>

Description of Attributes

focalMechanismID Refers to the publicID of an associated *FocalMechanism* object.

XML example

```xml
<focalMechanismReference>smi:ch.ethz.sed/fm/2054</focalMechanismReference>
```
4 References

A QuakeML—XML Schema Description

In this Section the XML Schema descriptions for QuakeML and QuakeML-RT are listed. The schemas can be found online at http://quake.ethz.ch/quakeml/docs/xml?action=AttachFile&do=get&target=QuakeML-BED-1.0.1.xsd (QuakeML) and http://quake.ethz.ch/quakeml/docs/xml?action=AttachFile&do=get&target=QuakeML-RT-BED-1.0.1.xsd (QuakeML-RT).

A.1 QuakeML

```xml
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:qml="http://quakeml.org/xmlns/quakeml/1.0"
  xmlns:scs="http://geofon.gfz-potsdam.de/ns/seismcomp3-schema/0.1"
  targetNamespace="http://quakeml.org/xmlns/quakeml/1.0"
  elementFormDefault="qualified"
  attributeFormDefault="unqualified">
  <xs:simpleType name="ResourceIdentifier">
    <xs:restriction base="xs:anyURI">
      <xs:pattern value="(smi|quakeml):\[/w\d/\-\_\-\*\'\(\)\]*\2\]/\[w\d/\-\_\-\*\'\(\)\]*\2\]/\ =\ /\;\;\?\]*"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="OriginUncertaintyDescription">
    <xs:restriction base="xs:string">
      <xs:enumeration value="uncertainty\_ellipse"/>
      <xs:enumeration value="confidence\_ellipsoid"/>
      <xs:enumeration value="horizontal\_uncertainty"/>
      <xs:enumeration value="probability\_density\_function"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="MomentTensorStatus">
    <xs:restriction base="xs:string">
      <xs:enumeration value="standard\_CMT\_solution"/>
      <xs:enumeration value="quick\_CMT\_solution"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="OriginDepthType">
    <xs:restriction base="xs:string">
      <xs:enumeration value="from\_location"/>
      <xs:enumeration value="from\_moment\_tensor\_inversion"/>
      <xs:enumeration value="from\_modeling\_of\_broad\_band\_P\_waveforms"/>
      <xs:enumeration value="constrained\_by\_depth\_phases"/>
      <xs:enumeration value="constrained\_by\_direct\_phases"/>
      <xs:enumeration value="operator\_assigned"/>
      <xs:enumeration value="other"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="OriginType">
    <xs:restriction base="xs:string">
      <xs:enumeration value="hypocenter"/>
      <xs:enumeration value="centroid"/>
      <xs:enumeration value="amplitude"/>
      <xs:enumeration value="macroseismic"/>
      <xs:enumeration value="rupture\_start"/>
      <xs:enumeration value="rupture\_end"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>
```
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="EvaluationMode">
 <xs:restriction base="xs:string">
 <xs:enumeration value="manual"/>
 <xs:enumeration value="automatic"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="EvaluationStatus">
 <xs:restriction base="xs:string">
 <xs:enumeration value="preliminary"/>
 <xs:enumeration value="confirmed"/>
 <xs:enumeration value="rejected"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="PickOnset">
 <xs:restriction base="xs:string">
 <xs:enumeration value="emergent"/>
 <xs:enumeration value="impulsive"/>
 <xs:enumeration value="questionable"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="MomentTensorMethod">
 <xs:restriction base="xs:string">
 <xs:enumeration value="CMT−general_moment_tensor"/>
 <xs:enumeration value="CMT−moment_tensor_with_zero_trace"/>
 <xs:enumeration value="CMT−double−couple_source"/>
 <xs:enumeration value="telesismic"/>
 <xs:enumeration value="regional"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="DataUsedWaveType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="body_waves"/>
 <xs:enumeration value="P_body_waves"/>
 <xs:enumeration value="long−period_body_waves"/>
 <xs:enumeration value="surface_waves"/>
 <xs:enumeration value="intermediate−period_surface_waves"/>
 <xs:enumeration value="long−period_mantle_waves"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="EventDescriptionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="felt_report"/>
 <xs:enumeration value="Flinn−Engdahl_region"/>
 <xs:enumeration value="local_time"/>
 <xs:enumeration value="tectonic_summary"/>
 <xs:enumeration value="nearest_cities"/>
 <xs:enumeration value="earthquake_name"/>
 <xs:enumeration value="region_name"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="EventType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="earthquake"/>
 <xs:enumeration value="explosion"/>
 <xs:enumeration value="quarry_blast"/>
 <xs:enumeration value="chemical_explosion"/>
 </xs:restriction>
</xs:simpleType>
<xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="Phase">
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="Comment">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="text" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 <xs:attribute name="id" type="qml:ResourceId"/>
</xs:complexType>

<xs:complexType name="ConfidenceEllipsoid">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="azimuth1" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="dip1" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="standardError1" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="azimuth2" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="dip2" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="standardError2" type="xs:double" minOccurs="1" maxOccurs="1"/>
 <xs:element name="standardError3" type="xs:double" minOccurs="1" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="Axis">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="azimuth" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 <xs:element name="plunge" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 <xs:element name="length" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="PrincipalAxes">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="tAxis" type="qml:Axis" minOccurs="1" maxOccurs="1"/>
 <xs:element name="pAxis" type="qml:Axis" minOccurs="1" maxOccurs="1"/>
 <xs:element name="nAxis" type="qml:Axis" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="DataUsed">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="waveType" type="qml:DataUsedWaveType" minOccurs="1" maxOccurs="1"/>
 <xs:element name="stationCount" type="xs:integer" minOccurs="1" maxOccurs="1"/>
 <xs:element name="componentCount" type="xs:integer" minOccurs="1" maxOccurs="1"/>
 <xs:element name="shortestPeriod" type="xs:double" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="CompositeTime">
 <xs:choice minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="lowerUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="upperUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="NodalPlane">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="strike" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
<xs:element name="dip" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
<xs:element name="rake" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="TimeWindow">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="begin" type="xs:double" minOccurs="1" maxOccurs="1"/>
<xs:element name="end" type="xs:double" minOccurs="1" maxOccurs="1"/>
<xs:element name="reference" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="WaveformStreamID">
<xs:simpleContent>
<xs:extension base="qml:ResourceId">
<xs:attribute name="networkCode" type="xs:string" use="required"/>
<xs:attribute name="stationCode" type="xs:string" use="required"/>
<xs:attribute name="locationCode" type="xs:string"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="IntegerQuantity">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="value" type="xs:integer" minOccurs="1" maxOccurs="1"/>
<xs:element name="lowerUncertainty" type="xs:integer" minOccurs="0" maxOccurs="1"/>
<xs:element name="upperUncertainty" type="xs:integer" minOccurs="0" maxOccurs="1"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="SourceTimeFunction">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="type" type="qml:SourceTypeFunctionType" minOccurs="1" maxOccurs="1"/>
<xs:element name="duration" type="xs:double" minOccurs="1" maxOccurs="1"/>
<xs:element name="riseTime" type="xs:double" minOccurs="1" maxOccurs="1"/>
<xs:element name="decayTime" type="xs:double" minOccurs="1" maxOccurs="1"/>
</xs:choice>
</xs:complexType>
<xs:complexType name="NodalPlanes">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="nodalPlane1" type="qml:NodalPlane" minOccurs="0" maxOccurs="1"/>
<xs:element name="nodalPlane2" type="qml:NodalPlane" minOccurs="0" maxOccurs="1"/>
</xs:choice>
</xs:complexType>
<xs:element name="stationCount" type="xs:integer" minOccurs="0" maxOccurs="1"/>
<xs:element name="azimuthalGap" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
<xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="comment" type="qml:Comment"/>
 <xs:element name="stationMagnitudeReference" type="qml:StationMagnitudeReference"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="publicID" type="qml:ResourceId" use="required"/>
</xs:complexType>
</xs:complexType>
<xs:complexType name="OriginUncertainty">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="horizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="minHorizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="maxHorizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="azimuthMaxHorizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="confidenceEllipsoid" type="qml:ConfidenceEllipsoid" minOccurs="0" maxOccurs="1"/>
 <xs:element name="preferredDescription" type="qml:OriginUncertaintyDescription" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>
<xs:complexType name="StationMagnitude">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="id" type="qml:ResourceId" minOccurs="1" maxOccurs="1"/>
 <xs:element name="mag" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 </xs:choice>
 <xs:element name="type" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="stationAmplitudeID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="methodID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="waveformID" type="qml:WaveformStreamID" minOccurs="0" maxOccurs="1"/>
 <xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="Arrival">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="pickID" type="qml:ResourceId" minOccurs="1" maxOccurs="1"/>
 <xs:element name="phase" type="qml:Phase" minOccurs="1" maxOccurs="1"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>
<xs:choice>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="comment" type="qml:Comment"/>
 <xs:element name="event" type="qml:Event"/>
 </xs:choice>
</xs:sequence>
<xs:attribute name="publicID" type="qml:ResourceId" use="required"/>
<xs:complexType>
 <xs:element name="quakeml">
 <xs:complexType>
 <xs:element name="eventParameters" type="qml:EventParameters" minOccurs="0" maxOccurs="1"/>
 </xs:all>
 </xs:complexType>
</xs:element>
</xs:schema>
A.2 QuakeML-RT

```xml
<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
  xmlns:qml="http://quakeml.org/xmlns/quakeml/1.0"
  xmlns:scs="http://geofon.gfz-potsdam.de/ns/seiscomp3-schema/0.1"
  targetNamespace="http://quakeml.org/xmlns/quakeml/1.0"
  elementFormDefault="qualified"
  attributeFormDefault="unqualified">
  <xs:simpleType name="ResourceIdentifier">
    <xs:restriction base="xs:anyURI">
      <xs:pattern value="{smi:quakeml}:\[w\d]+\-\+(\[w\d]+\-*\(\))\{2,\}(/[w\d]+\-*\(\)\+\|\;\|\?)*"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="OriginUncertaintyDescription">
    <xs:restriction base="xs:string">
      <xs:enumeration value="horizontal_uncertainty"/>
      <xs:enumeration value="uncertainty_ellipse"/>
      <xs:enumeration value="confidence_ellipsoid"/>
      <xs:enumeration value="probability_density_function"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="MomentTensorStatus">
    <xs:restriction base="xs:string">
      <xs:enumeration value="standard_CMT_solution"/>
      <xs:enumeration value="quick_CMT_solution"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="OriginDepthType">
    <xs:restriction base="xs:string">
      <xs:enumeration value="from_location"/>
      <xs:enumeration value="from_moment_tensor_inversion"/>
      <xs:enumeration value="from_modeling_of_broad-band_P_waveforms"/>
      <xs:enumeration value="constrained_by_depth_phases"/>
      <xs:enumeration value="constrained_by_direct_phases"/>
      <xs:enumeration value="operator_assigned"/>
      <xs:enumeration value="other"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="OriginType">
    <xs:restriction base="xs:string">
      <xs:enumeration value="hypocenter"/>
      <xs:enumeration value="centroid"/>
      <xs:enumeration value="amplitude"/>
      <xs:enumeration value="macroseismic"/>
      <xs:enumeration value="rupture_start"/>
      <xs:enumeration value="rupture_end"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="EvaluationMode">
    <xs:restriction base="xs:string">
      <xs:enumeration value="manual"/>
      <xs:enumeration value="automatic"/>
    </xs:restriction>
  </xs:simpleType>
  <xs:simpleType name="EvaluationStatus">
    <xs:restriction base="xs:string">
      <xs:enumeration value="preliminary"/>
    </xs:restriction>
  </xs:simpleType>
</xs:schema>
```
<xs:restriction base="xs:string">
 <xs:enumeration value="confirmed"/>
 <xs:enumeration value="rejected"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="PickOnset">
 <xs:restriction base="xs:string">
 <xs:enumeration value="emergent"/>
 <xs:enumeration value="impulsive"/>
 <xs:enumeration value="questionable"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="MomentTensorMethod">
 <xs:restriction base="xs:string">
 <xs:enumeration value="CMT_general_moment_tensor"/>
 <xs:enumeration value="CMT_moment_tensor_with_zero_trace"/>
 <xs:enumeration value="CMT_double_couple_source"/>
 <xs:enumeration value="teleseismic"/>
 <xs:enumeration value="regional"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="DataUsedWaveType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="body_waves"/>
 <xs:enumeration value="\(P\)_body_waves"/>
 <xs:enumeration value="long_period_body_waves"/>
 <xs:enumeration value="surface_waves"/>
 <xs:enumeration value="intermediate_period_surface_waves"/>
 <xs:enumeration value="long_period_mantle_waves"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="EventDescriptionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="felt_report"/>
 <xs:enumeration value="Flinn_Engdahl_region"/>
 <xs:enumeration value="local_time"/>
 <xs:enumeration value="tectonic_summary"/>
 <xs:enumeration value="nearest_cities"/>
 <xs:enumeration value="earthquake_name"/>
 <xs:enumeration value="region_name"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="EventType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="earthquake"/>
 <xs:enumeration value="explosion"/>
 <xs:enumeration value="quarry_blast"/>
 <xs:enumeration value="chemical_explosion"/>
 <xs:enumeration value="nuclear_explosion"/>
 <xs:enumeration value="landslide"/>
 <xs:enumeration value="debris_avalanche"/>
 <xs:enumeration value="rockslide"/>
 <xs:enumeration value="mine_collapse"/>
 <xs:enumeration value="volcanic_eruption"/>
 <xs:enumeration value="meteor_impact"/>
 <xs:enumeration value="plane_crash"/>
 <xs:enumeration value="building_collapse"/>
 <xs:enumeration value="sonic_boom"/>
 <xs:enumeration value="not_existing"/>
 </xs:restriction>
</xs:simpleType>
<xs:complexType name="SourceTimeFunctionType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="box_car"/>
 <xs:enumeration value="triangle"/>
 <xs:enumeration value="trapezoid"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
</xs:complexType>

<xs:complexType name="PickPolarity">
 <xs:restriction base="xs:string">
 <xs:enumeration value="up"/>
 <xs:enumeration value="down"/>
 <xs:enumeration value="undecidable"/>
 </xs:restriction>
</xs:complexType>

<xs:complexType name="TimeQuantity">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="value" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="uncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="lowerUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="upperUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="CreationInfo">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="agencyID" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="agencyURI" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
 <xs:element name="author" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="authorURI" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
 <xs:element name="creationTime" type="xs:dateTime" minOccurs="0" maxOccurs="1"/>
 <xs:element name="version" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="EventDescription">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="text" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="type" type="qml:EventDescriptionType" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>

<xs:complexType name="Phase">
 <xs:simpleContent>
 <xs:extension base="xs:string"/>
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="Comment">
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="text" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
</xs:complexType>
<xs:extension base="qml:ResourceIdentifier"/>
</xs:simpleContent>
</xs:complexType>
<xs:complexType name="MomentTensor">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="scalarMoment" type="qml:RealQuantity" minOccurs="0" maxOccurs="1"/>
<xs:element name="tensor" type="qml:Tensor" minOccurs="0" maxOccurs="1"/>
<xs:element name="variance" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="varianceReduction" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="doubleCouple" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="clvd" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="iso" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="greensFunctionID" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
<xs:element name="filterID" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
<xs:element name="sourceTimeFunction" type="qml:SourceTimeFunction" minOccurs="0" maxOccurs="1"/>
<xs:element name="method" type="qml:MomentTensorMethod" minOccurs="0" maxOccurs="1"/>
<xs:element name="status" type="qml:MomentTensorStatus" minOccurs="0" maxOccurs="1"/>
<xs:element name="cmtName" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="cmtVersion" type="xs:string" minOccurs="0" maxOccurs="1"/>
<xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="dataUsed" type="qml:DataUsed"/>
<xs:element name="comment" type="qml:Comment"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="derivedOriginID" type="qml:ResourceIdentifier" use="required"/>
<xs:attribute name="triggeringOriginID" type="qml:ResourceIdentifier"/>
<xs:attribute name="momentMagnitudeID" type="qml:ResourceIdentifier"/>
<xs:attribute name="methodID" type="qml:ResourceIdentifier"/>
</xs:complexType>
<xs:complexType name="FocalMechanism">
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="nodalPlanes" type="qml:NodalPlanes" minOccurs="0" maxOccurs="1"/>
<xs:element name="principalAxes" type="qml:PrincipalAxes" minOccurs="0" maxOccurs="1"/>
<xs:element name="azimuthalGap" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="stationPolarityCount" type="xs:int" minOccurs="0" maxOccurs="1"/>
<xs:element name="misfit" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="stationDistributionRatio" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
</xs:choice>
</xs:sequence>
</xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="comment" type="qml:Comment"/>
 <xs:element name="momentTensor" type="qml:MomentTensor"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="publicID" type="qml:ResourceIdentifier" use="required"/>
<xs:attribute name="triggeringOriginID" type="qml:ResourceIdentifier"/>
<xs:attribute name="methodID" type="qml:ResourceIdentifier"/>
</xs:complexType>
<xs:complexType name="Amplitude">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="amp" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 <xs:element name="type" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="period" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 <xs:element name="pickID" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
 <xs:element name="waveformID" type="qml:WaveformStreamID" minOccurs="0" maxOccurs="1"/>
 <xs:element name="filterID" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
 <xs:element name="methodID" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
 <xs:element name="timeWindow" type="qml:TimeWindow" minOccurs="0" maxOccurs="1"/>
 <xs:element name="scalingTime" type="qml:TimeQuantity" minOccurs="0" maxOccurs="1"/>
 <xs:element name="magnitudeHint" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="evaluationMode" type="qml:EvaluationMode" minOccurs="0" maxOccurs="1"/>
 <xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="publicID" type="qml:ResourceIdentifier" use="required"/>
</xs:complexType>
<xs:complexType name="StationMagnitudeReference">
 <xs:simpleContent>
 <xs:extension base="qml:ResourceIdentifier">
 <xs:attribute name="residual" type="xs:double"/>
 <xs:attribute name="weight" type="xs:double"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
<xs:complexType name="Magnitude">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="mag" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 <xs:element name="type" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="originID" type="qml:ResourceIdentifier" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>
<xs:element name="methodID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
<xs:element name="stationCount" type="xs:integer" minOccurs="0" maxOccurs="1"/>
<xs:element name="azimuthalGap" type="xs:double" minOccurs="0" maxOccurs="1"/>
<xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="comment" type="qml:Comment"/>
 <xs:element name="stationMagnitudeReference" type="qml:StationMagnitudeReference"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="publicID" type="qml:ResourceId" use="required"/>
</xs:complexType>
<xs:complexType name="Pick">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded">
 <xs:element name="time" type="qml:TimeQuantity" minOccurs="1" maxOccurs="1"/>
 <xs:element name="waveformID" type="qml:WaveformStreamID" minOccurs="1" maxOccurs="1"/>
 <xs:element name="filterID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="methodID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="azimuth" type="qml:RealQuantity" minOccurs="0" maxOccurs="1"/>
 <xs:element name="onset" type="qml:PickOnset" minOccurs="0" maxOccurs="1"/>
 <xs:element name="phaseHint" type="qml:Phase" minOccurs="0" maxOccurs="1"/>
 <xs:element name="polarity" type="qml:PickPolarity" minOccurs="0" maxOccurs="1"/>
 <xs:element name="slowness" type="qml:RealQuantity" minOccurs="0" maxOccurs="1"/>
 <xs:element name="evaluationMode" type="qml:EvaluationMode" minOccurs="0" maxOccurs="1"/>
 <xs:element name="evaluationStatus" type="qml:EvaluationStatus" minOccurs="0" maxOccurs="1"/>
 <xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="publicID" type="qml:ResourceId" use="required"/>
</xs:complexType>
<xs:complexType name="FocalMechanismReference">
 <xs:simpleContent>
 <xs:extension base="qml:ResourceId"/>
 </xs:simpleContent>
</xs:complexType>
<xs:complexType name="OriginReference">
 <xs:simpleContent>
 <xs:extension base="qml:ResourceId"/>
 </xs:simpleContent>
</xs:complexType>
<xs:complexType name="MagnitudeReference">
 <xs:simpleContent>
 <xs:extension base="qml:ResourceId"/>
 </xs:simpleContent>
</xs:complexType>

<xs:complexType name="Event">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="preferredOriginID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="preferredMagnitudeID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="preferredFocalMechanismID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="type" type="qml:EventType" minOccurs="0" maxOccurs="1"/>
 <xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 </xs:sequence>
 <xs:attribute name="publicID" type="qml:ResourceId" use="required"/>
</xs:complexType>

<xs:complexType name="OriginUncertainty">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="horizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="minHorizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="maxHorizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="azimuthMaxHorizontalUncertainty" type="xs:double" minOccurs="0" maxOccurs="1"/>
 <xs:element name="confidenceEllipsoid" type="qml:ConfidenceEllipsoid" minOccurs="0" maxOccurs="1"/>
 <xs:element name="preferredDescription" type="qml:OriginUncertaintyDescription" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="StationMagnitude">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="id" type="qml:ResourceId" minOccurs="1" maxOccurs="1"/>
 <xs:element name="mag" type="qml:RealQuantity" minOccurs="1" maxOccurs="1"/>
 <xs:element name="type" type="xs:string" minOccurs="0" maxOccurs="1"/>
 <xs:element name="stationAmplitudeID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="methodID" type="qml:ResourceId" minOccurs="0" maxOccurs="1"/>
 <xs:element name="waveformID" type="qml:WaveformStreamID" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="compositeTime" type="qml:CompositeTime"/>
 <xs:element name="comment" type="qml:Comment"/>
 <xs:element name="originUncertainty" type="qml:OriginUncertainty"/>
 <xs:element name="stationMagnitude" type="qml:StationMagnitude"/>
 <xs:element name="arrival" type="qml:Arrival"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="publicID" type="qml:ResourceId" use="required"/>
</xs:complexType>
<xs:complexType name="EventParameters">
<xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="creationInfo" type="qml:CreationInfo" minOccurs="0" maxOccurs="1"/>
 </xs:choice>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="comment" type="qml:Comment"/>
 <xs:element name="reading" type="qml:Reading"/>
 <xs:element name="focalMechanism" type="qml:FocalMechanism"/>
 <xs:element name="amplitude" type="qml:Amplitude"/>
 <xs:element name="magnitude" type="qml:Magnitude"/>
 <xs:element name="pick" type="qml:Pick"/>
 <xs:element name="event" type="qml:Event"/>
 <xs:element name="origin" type="qml:Origin"/>
 </xs:choice>
</xs:sequence>
<xs:attribute name="publicID" type="qml:ResourceId" use="required"/>
</xs:complexType>
<xs:complexType>
<xs:all>
 <xs:element name="eventParameters" type="qml:EventParameters" minOccurs="0" maxOccurs="1"/>
</xs:all>
</xs:complexType>
</xs:schema>